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Introduction

Similarly to the hints, each page will be for a question to avoid accidentally
spoiling it for yourself. The aim of the sample problems are to introduce/teach
the main techniques which will be used in the competitions. Competitions likely
will have more definite integrals than indefinite integrals as I feel like definite
integrals can give a lot more variety in the techniques involved to evaluate them.
DUTIS will be used as an abbreviation for differentiation under the integral sign:

d

dt

(∫ b

a

f(x, t)dx

)
=

∫ b

a

∂

∂t
(f(x, t)) dx

For those who did the competition in 2020, the sample problems are the same as
the ones then. Some solutions have been updated to have some extra comments
or alternative solutions too.
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Question 1

Let I(t) =

∫ 1

0

xt − 1

lnx
dx.

Using DUTIS,

I ′(t) =

∫ 1

0

xtdx =

[
xt+1

t+ 1

]1
0

=
1

t+ 1

Now that means that I(t) = ln(t+ 1) + c. Note that I(0) = 0 = ln 1 + c = c
therefore I(t) = ln(t+ 1) so I(5) = ln 6 in particular.

Due to the parameter required in DUTIS, you get a generalisation of the
integral which is neat.
For the alternative solution, we have upon writing it as a double integral:

I =

∫ 1

0

∫ 5

0

xydydx

Now that it’s a double integral, we can swap the order of integration. Doing
this gives us

I =

∫ 5

0

∫ 1

0

xydxdy =

∫ 5

0

dy

y + 1
= ln 6

This method can also be applied to the more general integral I(t) too. Usually
this double integral trick works in a similar way to DUTIS (friendly with
parameters) and will generally be quite useful whenever there’s two functions
of the same type being subtracted from each other e.g f(tx)− f(sy).

2



Question 2

This is the well known Dirichlet integral. The solution which is presented here
is using DUTIS. For those who know about Laplace transforms, it can be more
easily evaluated with that.

Let I(t) =

∫ ∞
0

e−tx
sinx

x
dx. The motivation for this is what was in the hints;

differentiating it gets rid of the x in denominator and the integral is convergent
upon differentiating. Another key bonus is that as t→∞, the integral
approaches 0 which gives a way to evaluate the constant of integration.

Using DUTIS, I ′(t) = −
∫ ∞
0

e−tx sinxdx which is a standard integral - it can

be evaluated by integrating by parts twice. For those who are aware of
Laplace transforms, you can just look up the Laplace transform of sin t for this

and it gives I ′(t) = − 1

t2 + 1
.

Integrating this, I(t) = c− arctan t. Noting that lim
t→∞

I(t) = 0 from above,

c− π

2
= 0 so I(t) =

π

2
− arctan t. The required integral is then I(0) =

π

2
.
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Question 3

Let I =

∫ π
2

0

√
sinx√

sinx+
√

cosx
dx.

The main idea in this is the reflection property,∫ b

a

f(x)dx =

∫ b

a

f(a+ b− x)dx

Use the substitution u =
π

2
− x so that du = −dx and the limits change from

π

2
to 0.

Now noting that ∫ b

a

f(x)dx = −
∫ a

b

f(x)dx

and sin
(π

2
− x
)

= cosx and cos
(π

2
− x
)

= sinx, I =

∫ π
2

0

√
cosx√

sinx+
√

cosx
dx.

Adding this to the original form of I,

2I =

∫ π
2

0

√
sinx+

√
cosx√

sinx+
√

cosx
dx =

∫ π
2

0

dx =
π

2

Therefore I =
π

4
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Question 4

Let I =

∫ ∞
0

lnx

x2 + 1
dx. Let u =

1

x
.

Then, the limits become from ∞ to 0 and
du

dx
= − 1

x2
so that dx = −du

u2
.

Putting all of this information together,

I =

∫ 0

∞

ln
(
1
u

)
1 + 1

u2

− du

u2
=

∫ ∞
0

− lnu

1 + u2
du = −I

Since I = −I, I = 0.

Another method for this integral is to let x = tan θ and noting that
ln(tan θ) = ln(sin θ)− ln(cos θ), can you see why?
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Question 5

Let I =

∫ 2

1

lnx

2− 2x+ x2
dx =

∫ 2

1

lnx

(x− 1)2 + 1
dx.

Now make the substitution u = x− 1 so that the limits become from 0 to 1
and du = dx. Then the integral becomes

I =

∫ 1

0

ln(u+ 1)

u2 + 1
du

This integral is known as Serret’s integral. With the x2 + 1 denominator, it
looks ripe for a tan substitution; let u = tan θ so that du = sec2 θdθ and the

limits become from 0 to
π

4
. Then,

I =

∫ π
4

0

ln(1 + tan θ)dθ

Now the reflection property from earlier can be applied; let t =
π

4
− θ. In

particular,

tan
(π

4
− t
)

=
tan

(
π
4

)
− tan t

1 + tan
(
π
4

)
tan t

=
1− tan t

1 + tan t

Given that,

I =

∫ π
4

0

ln

(
1 +

1− tan t

1 + tan t

)
dt

=

∫ π
4

0

ln

(
2

1 + tan t

)
dt

=

∫ π
4

0

ln 2dt−
∫ π

4

0

ln(1 + tan t)dt

=
π ln 2

4
− I

So now, I =
π ln 2

8
.

If you’d like more practice with DUTIS, you can try Serret’s integral using it.
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Question 6

This integral is best done by considering the power series expansion of
ln(1− x).

I =

∫ 1

0

ln(1− x)

x
dx =

∫ 1

0

−
∞∑
n=1

xn−1

n
dx

= −
∞∑
n=1

1

n

∫ 1

0

xn−1dx

= −
∞∑
n=1

1

n

[
xn

n

]1
0

= −
∞∑
n=1

1

n2
= −ζ(2)

by using the definition of the Riemann zeta function. Some of you may be

aware that this value is
π2

6
so I = −π

2

6
.
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Question 7

This is the gamma function. The approach here is to integrate by parts, let

u = xn−1,
du

dx
= (n− 1)xn−2 and

dv

dx
= e−x so v = −e−x

Let In =

∫ ∞
0

xn−1e−xdx. Then,

In =
[
−e−xxn

]∞
0

+

∫ ∞
0

(n− 1)xn−2e−xdx

= (n− 1)In−1

Noting that In = 1, this recurrence relation means that In = (n− 1)!. Of
course, as this integral is defined for non integer arguments, it serves as an
extension of the factorial function from integer to real and complex arguments.
In = Γ(n) and the working out above holds for all n > 0 so
Γ(n) = (n− 1)Γ(n− 1). There are many different representations of the
gamma function such as the Weierstrass and Euler product forms and these
two properties, along with the fact that ln Γ(x) is convex, uniquely determine
the Gamma function due to the Bohr-Mollerup theorem.
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Question 8

In this question we’ll combine the method with of Question 6 and the function
in Question 7. Right now, the power series resulting from expanding a
constituent part of the integrand are all divergent so first, divide the top and
bottom by ex.

∫ ∞
0

xs−1

ex − 1
dx =

∫ ∞
0

xs−1e−x

1− e−x
dx

=

∫ ∞
0

xs−1
∞∑
k=1

e−kxdx

=

∞∑
k=1

∫ ∞
0

xs−1e−kxdx

=

∞∑
k=1

1

ks

∫ ∞
0

us−1e−udu (u = kx)

=

(∫ ∞
0

xs−1e−xdx

) ∞∑
k=1

1

ks
= Γ(s)ζ(s)

where in the last step, Γ(s) was taken out of the sum as a constant
independent of k; it only depends on s.
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Question 9

This integral is done by handling the floor function so that it can be put into a
form that can be integrated. Note that if k ≤ x < k + 1 then bxc = k. With
this in mind, write the integral in this form:∫ ∞

1

x− bxc
x4

dx =

∫ ∞
0

dx

x3
−
∫ ∞
1

bxc
x4

dx

=

[
− 1

2x2

]∞
1

−
∞∑
k=1

∫ k+1

k

k

x4
dx

=
1

2
−
∞∑
k=1

[
− k

3x3

]k+1

k

=
1

2
−
∞∑
k=1

[
k

3k3
− k

3(k + 1)3

]
(telescoping sum)

=
1

2
−
(

1

3 · 13
− 1

3 · 23
+

2

3 · 23
− 2

33
+

3

3 · 33
+ . . .

)
=

1

2
− 1

3

(
1

13
+

1

23
+

1

33
+ . . .

)
=

1

2
− 1

3
ζ(3)
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Question 10

This problem is actually from a meme here, students at Nanjing University of
Aeronautics and Astronautics had to solve this integral for access to the wifi.
So now, if you ever find yourself there, after reading this you’ll be able to get
onto their wifi!

Anyway, I think this is best done by considering the two parts of the

integrand. The function in first part, f(x) = x3 cos
(x

2

)√
4− x2, is an odd

function as f(−x) = f(x) so that∫ 2

−2
x3 cos

(x
2

)√
4− x2dx = 0

For the second part, the integrand is even so it isn’t obliterated by integrating
from −2 to 2. To evaluate it, a sine or cosine substitution can be made; an

alternative way is to note that if y =
√

4− x2, x2 + y2 = 4 so that this is half
the area of a semicircle of radius 2. Therefore,∫ 2

−2

1

2

√
4− x2dx = π

which is the value of the whole integral. The wifi password then is
3.141592653.
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Question 11

Another method for this integral is to let u = tanx which is more direct but
this solution will go over the method which is outlined in the hints.

Upon multiplying top and bottom by cosx, the desired integral is

I =

∫
cosx

sinx+ cosx
dx and let J =

∫
sinx

sinx+ cosx
dx.

Now

I + J =

∫
sinx+ cosx

sinx+ cosx
dx =

∫
dx = x+ c

I − J =

∫
cosx− sinx

sinx+ cosx
dx = ln(sinx+ cosx) + c

so that I =
1

2
(x+ ln(sinx+ cosx)) + c.
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Question 12

There isn’t much in this one other that once you realise to differentiate√
tanx, you get

d

dx
(
√

tanx) =
sec2(x)

2
√

tanx
=

√
tanx

2 sinxcosx
=

√
tanx

sin(2x)

which is exactly the integrand.

A different method suggested by Sharky Kesa#9845 on discord is to make a
substitution which makes the numerator disappear - that might help you work
this one out more easily.
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Question 13

This integral is here to remind you to consider modifying the integrand to
make the integral easier. For this one, just divide the top and bottom by ex

and then the derivative of the top is equal to the derivative of the bottom:∫
dx

1 + ex
=

∫
e−x

1 + e−x
dx = − ln(1 + e−x) + c

14



Question 14

First, let u = lnx so that du =
dx

x
, then the integral becomes

∫
dx

1 + sin2 x
=

∫
sec2 x

sec2 x+ tan2 x
dx

=

∫
sec2 x

1 + 2 tan2 x
dx

=

∫
du

1 + 2u2
du (u =

√
2 tanx)

=
1√
2

arctan(
√

2u) + c =
1√
2

arctan(
√

2 tan(lnx)) + c
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Question 15

This relies on the sum of cubes to provide a partial fraction representation;
x3 + 1 = (x+ 1)(x2 − x+ 1). The general representation for this fraction is

1

x3 + 1
=

A

x+ 1
+

Bx+ C

x2 − x+ 1

To find the constants, multiply through by the two factors so that

1 = A(x2 − x+ 1) + (Bx+ C)(x+ 1)

Let x = −1 so that A =
1

3
. Then, considering the x2 coefficient,

B = −A = −1

3
and considering the constant term, A+ C = 1 so that C =

2

3
.

Then∫
dx

x3 + 1
=

∫
1

3(x+ 1)
+

2− x
3(x2 − x+ 1)

dx

=
1

3
ln(x+ 1)− 1

6

∫
2x− 1

x2 − x+ 1
dx+

1

2

∫
dx

(x− 1
2 )2 + 3

4

=
1

3
ln(x+ 1)− 1

6
ln(x2 − x+ 1) +

1

2

∫ √
3
2 sec2 u
3
4 sec2 u

du

(√
3

2
tanu = x− 1

2

)

=
1

3
ln(x+ 1)− 1

6

(
ln(x2 − x+ 1) + 2

√
3 arctan

(
2x− 1√

3

))
+ c

Quite messy!
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Question 16

The idea here is to use the Weierstrass substitution, t = tan
(x

2

)
so

sinx =
2t

1 + t2
and cosx =

1− t2

1 + t2
and dx =

2dt

1 + t2
- have a go at deriving

these if you’re unfamiliar with it. Now, upon making this substitution,

∫
dx

2 + sinx
=

∫
2dt

2t+ 2t2 + 2

=

∫
dt

(t+ 1
2 )2 + 3

4

=
2√
3

arctan

(
2t+ 1√

3

)
+ c (after a substitution like the one in Q15)

=
2√
3

arctan

(
2 tan

(
x
2

)
+ 1

√
3

)
+ c
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Question 17

This is just a fun little one to make sure you’re aware of converting things to
base e. First, note that x = eln x so that xa = ea ln x for any real number a.

Now x
1

ln x = e so the integral is just ex+ c.
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Question 18

You can go for this with Weierstrass substitution if you wanted but sometimes
with trig integrals it’s better to mess around with it for a bit. A nice idea to
keep in mind is if you can exploit trig identities like 1− sin2 x = cos2 x to
simplify that denominator into one function so difference of two squares is
good to keep in mind. This question is a perfect example of that:∫

dx

1− sinx
=

∫
1 + sinx

1− sin2 x
dx

=

∫
1 + sinx

cos2 x
dx

=

∫
sec2 xdx+

∫
secx tanxdx = secx+ tanx+ c
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Question 19

First, I’d like to turn down the x2 terms with a u = x2 substitution.

du = 2xdx so the integral becomes
1

2

∫ √
1− u
1 + u

du. Now let u = cos(2v) so

that du = −2 sin(2v)dv and more importantly, 1− u = 2 sin2 v;
1 + u = 2 cos2 v. Putting all of this into the integral gives

1

2

∫ √
1− u
1 + u

du = −
∫

sin v

cos v
sin(2v)dv

= −2

∫
sin2 vdv

=

∫
cos(2v)− 1dv

=
1

2
(sin(2v)− 2v) + c

=
1

2
(sin(cos−1(x2))− cos−1(x2)) + c

As there’s some sines and inverse cosines mixed here, that’s a big algebraic
expression so if you did it another way, you’d get an equivalent answer which
looks quite different, for example on Symbolab’s integral calculator. You can
confirm your answer by running it through a derivative calculator.
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Question 20

For this integral, I turned it into a rational function which can be dealt with
using a tan sub. This might not be the ideal way and, like question 19, you
might get an answer which looks a lot different to answers you see online.
First, take an ex out of the top:

I =

∫
e2x + e3x

e2x + 1
exdx

=

∫
u3 + u2

u2 + 1
du (u = ex)

=

∫
u3

u2 + 1
du+

∫
du−

∫
du

u2 + 1

= u− arctanu+

∫
tan3 vdv (u = tan v)

= ex − arctan ex +

∫
tan v(sec2 v − 1)dv

= ex − arctan ex +

∫
tan v sec2 vdv −

∫
tan vdv

= ex − arctan ex +
1

2
sec2 v tan v + ln | cos v|+ c

= ex − arctan ex +
1

2
(sec2(arctan(ex))) + ln | cos(arctan(ex))|+ c

Like the last question, you might get some different answers for this but check
derivative calculator to make sure you’re right.

An alternative solution suggested by George!#1242, you can do the ’adding
zero’ trick where you write u3 integral as u3 + u− u which greatly simplifies
the calculation.

21


